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Abstract— Optimization in online advertising typically
involves feedback control as a critical component. Here
we propose a control system that maximizes the return on
investment (ROI) for an advertiser and paces the budget
delivery. It consists of an integral controller with periodic
feedforward compensation of the set-point and persistent
excitation. We derive stability conditions for the controller.
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I. INTRODUCTION

Programmatic advertising is at the heart of the business
model for companies such as Google, Facebook, and Verizon
Media. A Demand Side Platform (DSP) is a particular busi-
ness model for programmatic advertising. It is the middleman
between an advertiser and one or more open exchange trad-
ing so called ad impressions. An impression is an opportunity
of showing an ad creative, e.g., banner ad, text ad, or pre-roll
video commercial to Internet users. The goal of a DSP is to
manage an advertiser’s advertisement budget optimally.

The optimization is challenging due to the underlying
high-dimensional, nonlinear, time-varying, dynamic, and
stochastic plant. An early pre-DSP publication on feedback
control applied to online advertising [1] outlined several
important challenges, but omitted detailed solutions. A more
comprehensive overview of the control problem was pre-
sented in [2] in which bid randomization [3] was proposed
to overcome complexities due to a discontinuous plant.
Different approaches for control of advertising processes are
proposed in [4], [5], [6], [7], [8], but none of these papers
adequately consider both the dynamic and periodic nature of
the plant. Statistical inference of the plant gain based on an
uncertain discontinuous plant response curve combined with
bid randomization is presented in [9].

Our contribution is a proposed controller structure and
conditions under which it ensures global asymptotic stability.

The paper is organized as follows. In Section II we intro-
duce the ad optimization-turned-control problem. Thereafter,
in Section III, we show how the otherwise discontinuous
plant is turned smooth. Section IV introduces a plant model
and Section V suggests a plant identification algorithm. The
core of the paper is in Section VI, where the controller
structure is proposed and the stability conditions are derived.
Section VII contains a simulated example of the closed loop
system and Section VIII some concluding remarks.

II. OPTIMIZATION TURNED CONTROL PROBLEM

The (optimization) objective is to spend an advertiser’s
online marketing budget in such a way that her total adver-
tisement value, or return on investment (ROI), is maximized.
Provided by the advertiser is a monetary budget, which is
typically a fixed daily budget for the duration of a campaign
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flight. Given is also an optimization metric, such as, click
or conversion count, which are examples of performance
metrics, or brand value. The advertiser may associate a
different value to each click or conversion, and almost always
associates a different brand value to each impression based
on user characteristics and site properties. The total value
of an impression ¢ is denoted v;. This metric encodes the
combined brand and performance value. For example, v; =
vB,i + PCTR,iVC,i» Where vp ; is the brand value of serving
our ad to this user, pcrr,; is the probability the user will
click on the ad, and vc; is the advertiser-defined value of a
click generated by the user.

Impressions are purchased on open exchanges where they
are sold by publishers or Supply Side Platforms (SSPs), under
a sealed second price auction. The bid submitted by the DSP
on behalf of the advertiser for impression opportunity ¢ is
denoted b;, while the highest competing bid price is denoted
by. The impression is awarded to the highest bidder, hence
our advertiser will have an ad served to the user if b; > b} in
which case the advertiser is charged b} for the impression.

Define fotal (advertisement) value v of an ad campaign
as the cumulative value of all awarded impressions, and
total cost c as the cumulative cost for these impressions.
The second price cost model implies that v =}, vl >pry
and ¢ =}, b7l >4y, where Ix is the indicator function
satisfying [y = 1, if X = true, and [x = 0, if X = false.
It is known that the maximization of v subject to a budget
constraint ¢ < u'%/, is achieved using a bidding strategy
b; = wv;, where u is selected as the largest single value for
which the budget constraint is not violated [2]. This result
is illustrated graphically in Figure 1.
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Fig. 1. The plot shows the relative ROI of different impression opportuni-

ties, where each impression is associated with an impression value v; and
a cost b. High ROI impressions are located in the upper left corner, and
low ROT impressions in the bottom right.

Each impression we bid for is associated with a value v;
and a cost b7, hence can be mapped to a coordinate in the
value versus cost plot. Impressions in the upper left corner



with high value and low cost correspond to the highest ROI
impressions since they translate to the largest value per ad
dollar spend. Impressions along a straight line going through
the origin all have the same ROI, and impressions in the
lower right corner with low value and high cost correspond
to the lowest ROI impressions. Finally, impressions in the
green shaded region all have higher ROI than impressions in
the orange shaded region.

By bidding along the straight line, we win the impres-
sions in the green region and the optimization problem is
effectively decoupled into an impression value computation
problem and a control problem. The value computation
problem is really a prediction problem and involves large
scale machine learning based on user features and historical
engagement data to compute the best possible estimate of
v; for which we are about to bid. Independently, a feedback
controller adjusts v dynamically based on delivered budget.
In this paper we assume the estimate of v; is available
and focus on the control problem. An important property
using bidding mechanism b; = wv; is that v(u), ¢(u), and
v(u)/c(u) are monotonic functions of w. It ensures we deal
with a convex problem. Convexity is in general lost for other
bidding mechanisms.

Because of the natural time-of-day pattern in Internet
users’ presence online there is a dramatic seasonality in the
available number of impression opportunities. At the daily
high there are about ten times more people online compared
to near the daily low. A naive control approach does not take
the supply seasonality into account and strive to spend the
same amount of the budget every hour of the day. This leads
to overbidding for impressions nighttime when there are few
impressions available to buy. Furthermore, Internet traffic is
random with an approximately scale-invariant (Poisson-like)
standard deviation.

Finally, due to the auction-based allocation of impressions,
the relationship between control signal and ad spend (or cost)
is described by a discontinuous, staircase-like relationship as
illustrated in Figure 2. The awarded number of impressions
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Fig. 2. Two representative examples of awarded number of impressions

versus control signal u. Campaign A is a well-behaved campaign with
an approximately smooth relationship while Campaign B is a challenging
campaign with pronounced large steps in the relationship.

as a function of u is shown for two real ad campaigns.
Campaign A is well-behaved while Campaign B is not.

In the remainder of the paper, we assume the controller
is implemented in discrete time. Control signal w(t) is
updated at discrete time points ¢ = 1,2,... (without loss
of generality) based on a set-point signal @.(t) > 0, defined
by the advertiser, and an observed marginal ad spend y(t).
However, the advertiser cares primarily about the daily pac-
ing and value maximization hence the optimization system
may distribute the spend throughout the day in the most
economical way.

III. PLANT SMOOTHING

A plant that is not approximately continuous leads to an
extremely complex closed-loop dynamics. Fortunately, we
may always use Heisenberg bidding [2], [3] to turn a plant
effectively continuous. It is a bid randomization technique by
which each computed nominal bid by ; (= uv;) is perturbed
randomly before submitted to the auction exchange. It can
be implemented with other probability distributions, but the
gamma distribution is a particularly convenient choice since
it has support for all positive values of by; and brings
along many useful properties as a member of the family of
exponential distributions.

In this case, the distribution is parameterized by by ;
and uncertainty signal u,, to generate a final bid price
b; used in the market clearing. In particular, b; is a
realization of a random variable B; defined by B; ~
Gamma (l/ui,l/(bo7iu3)) if b07i,uu > 0, and B; = boﬂ‘,
otherwise. In terms of the shape parameter a and the
inverse scale parameter /3, Heisenberg bidding is defined by
a = 1/u? and B = 1/(by;u2). Hence, EB; = by, and
Var (B;) = b3 ;ul. In other words, Std(B;)/EB; = .,
where Std(B;) is the standard deviation of B;.

The input-output relationship of the plant can be made
arbitrarily smooth by adjusting the uncertainty signal. This
is illustrated in Figure 3, which shows the result of adding
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Fig. 3. The impact of using bid uncertainty on Campaign B in Figure 2.
Note that the nominal control signal versus impression volume relationship
is discontinuous only when the uncertainty signal equals zero.

the dimension of uncertainty signal to Campaign B in the
previous figure.

IV. PLANT MODEL

The relationship between control signal u(t) and delay-
free ad spend 9(t), in general, is nonlinear, time-varying, and
stochastic according to §(t) = f(¢, u(t), wm(t)) for some
non-negative function f that is increasing in « and stochastic
in w,,,. However, for each time ¢, E(¢) is linearizable in some
small neighborhood of each u (potentially after invoking
Heisenberg bidding). We assume the time-variability caused
by a time-varying Internet traffic is 7-periodic and scale-
invariant. The expected ad spend near control signal u(t)
can then be written E(4(t)) = (1 + h(t))(ao + a1u(t)) for
some values of plant offset ag and plant gain a, > 0, and for
some T-periodic function h(t) satisfying h(t + T) = h(¢),
Si_y h(i) =0, and h(t) > —1, VL.



The ad spend is subject to approximately scale-invariant
stochastic noise due to traffic variations, which is represented
by multiplicative white noise. Finally, the observed ad spend
y(t) is modeled by ¢(t) subject to a first order measurement
latency defined by a plant latency time constant Tp, which is
mapped to the discrete-time model parameter a3 = e~ 2/Tp,
where A is sampling time. In conclusion, the plant model is

y(t) —asy(t—1) = (1—az)(1+h(t—-1))
“(ap + aru(t — 1)) (1 4+ wp(t — 1)), (1)

where w,,(t) ~ WN(0,02,)!. The system delay parameter
as and the seasonality function h(t) can be estimated off-
line [10], while a¢ and a; are unknown a priori.

V. PLANT IDENTIFICATION

Stability of the closed loop system is tightly coupled to
the relationship between plant and controller properties. It
is therefore important to estimate the unknown a and a;.
Plant model (1) may be rewritten as

y(t) —azy(t — 1)
(1—a3)(1+h(t—1))

where W, (t) ~ WN(0, (ag + aju(t))?02,). Note, z(t) is a
sequence of uncorrelated random variables with E (z(t)|u(t—
1) = ap + alu(t — 1) and Var(z(t)|u(t - 1)) = (ao +
alu(t —1))%02,. A prediction of z( ) is given by Z(t) =
ap + aju(t — 1) ‘based on estimates ap and a.

Assume u(t) operates in a reasonably small neighborhood
of some operating point. Then w,,(t) has approximately
constant variance and 6 := [ag,a1]’ can be estimated in
closed form by minimizing the sum of squares of residuals,
z(t) — 2(t), based on measurement u(i),y(i), i = 1,...,t.
This solution may be implemented as a standard Recursive
Least Squares (RLS) estimator with exponential memory loss
to allow for time-varying plant parameters.

2(t) = =ao+taiu(t—1)+wmn(t—1), 2

VI. CONTROL
A state space representation of plant model (1) is

l‘l(t + 1) = a3x1(t) + (1 — a3)(1 + h(lf))
{(ao + aru(t))(1 4w (1)) 3)
y(t) = x1(t) (4)

To solve the control (aka, optimization) problem, we propose
using pure integral (I) error feedback servo control with
feedforward adjustment of the reference signal, and open
loop persistent excitation of the servo control signal. The
feedforward controller modifies the deterministic reference
input signal @.(t) based on known values of a3 and h(t).
The idea is to distribute a daily ad budget throughout the
day according to the seasonality of impression supply. This
avoids a situation where the control system raises the control
signal and hikes the bid prices during times of the day
when there is a limited impression supply. The feedforward
controller dynamics is described by

xz3(t+1) = asxs(t) + (1 —a3)(1+ h(t))uc(t) (5
uc(t) = wz3(t) (6)
The I-controller computes a servo control signal wg(t)

based on a tracking error signal e(t) with the goal of

YA white noise (WN) process is a random process of random variables
that are uncorrelated, have mean zero, and a finite variance.

minimizing or reducing the marginal and cumulative tracking
error and leveraging an approximately constant wug(¢); and
thereby maximizing the ROI of the campaign. The feedback
controller dynamics is defined by

e(t) uc(t) —y(t) (7)
zo(t+1) = z2(t) + ce(t) (8)
uop(t) = x2(t) + celt) )

To guarantee stability, the integral gain ¢, must be chosen as
a function of a4, or in practice as a function of an estimate
a; thereof. However, throughout the analysis in this section
we assume ¢; is a given constant.

Plant identification requires persistent excitation and to en-
sure this, we complement the I-controller with a perturbation
system that computes a final control signal u(t) from

x4(t+1) agxq(t) + (1 — ag)wy(t)
u(t) uo(t)(1 4 w4(t)),

where w,,(t) is an artificially generated WN(0, 02) pertur-
bation signal. In practice, we parameterize the excitation
via a persistent excitation time constant Tpg and compute
ay = e~ /TPE, Using a dynamic in the persistent excitation,
as opposed to only white noise, reduces the impact of
an imperfect knowledge of the plant latency (modeled by
parameter as).

The plant is represented by state x; and the controller
by states x3, x3, and z4. We judge the performance of the
closed loop system based on performance signals e(t) and
u(t). The desired behavior is for e(t) to stay close to zero
and u(t) close to a constant. This corresponds to a situation
where the maximum value for the advertiser is generated,
and where the daily delivery pacing is even. The controller
defined by (5)-(11) is summarized in Algorithm 1.

(10)
(11

Algorithm 1: Control

Parameters: ¢, 0, h(t),as; (in practice, ¢ is a function
of al)
Input: @.(t),y(t); (in practice, Gq(t) is also an input
used to compute ¢ = ¢(a1))
State: X2,T3,T4
Initialization (¢ = 0):
22(0) = 220
$3(0) = T3,0
T4 (0) =0
For each instant of time, t = 1,2, ...,
ue(t) = x3(t)
e(t) = uc(t) —y(t)
ug(t) = x2(t) + e(t)
u(t) = uo(t) (1 + z4(t))
wy (t) ~ WN(0,02)
To(t+ 1) = xo(t) —I— c,e( )
.’Eg(t+1):a313 1—a3 (1+h ) )
2a(t+ 1) = agwya(t) + (1 — ag)wy(t)

compute:

Now, analyze the closed-loop dynamics and derive fixed
point solutions and limit cycles with stability conditions.
Plug (4) and (6) into (7) and combine the result with (9)



and (11), to obtain e(t) and w(t) as functions of the states
)

e(t) =
u(t) =

—3;‘1(75) +$3(t (12)

)+ (1 + 24(t))z2(t)
)- (13)

Next, plug (13) into (3) and (12) into with (8); and define
@o(t) = (1 —a3)(1+ h(t)) and @1 (x4, wm) = z4(t) +
Wy (8) + 24 (t)w,, (). Note that ¢g(t) is deterministic and
periodic; while ¢4 (24, w,,) is time-invariant, stochastic, and
nonlinear in the uncorrelated random variables x4 and w,,.
This leads to the closed loop state update equations

—c (14 z4(¢)
+a (1 + z4(2)

)1 (
)

t
l’g(t

z(t+1) = (a3 —ajcpo(t) (1 + p1(xy, wm)))xl(t)
+a190(t) (1 + @1(z4, i) ) 22(t)
+aiapo(t) (1 + p1(xy, wm))xg(t)
+aopo(t) (1 + w (1)) (14)
xa(t+1) = za(t) — qz1(t) + czs(t) (15)
z3(t+1) = azas(t) + po(t)uc(t) (16)
x4(t +1) a424(t) + (1 — ag)wy(t) (17)

Note, z3 and x4 evolve independently of x1, 2, and w,;
and have closed form solutions

t
abas(0) + Y ay tpo(t — i)t — i) (18)

z3(t) =
i=1
t .
z4(t) = alz4(0) + (1 — ay) Zafl_lwu(t —1) (19)
i=1
It suffices to analyze x;, xo while treating z3, x4 as
exogenous input signals. Define
I1(t) = alzi(t) — z3(t)) (20)
- Ue — @
Fa(t) = ao(t) — 0 1)
a1

Combining (20)-(21) with (14)-(15) yields the state update
equations for Z;(t) and Zo(t)

Z1(t+1) (a3 —a1¢p0(t) (1 + 1 (24, wm)))fl(t)
+a1c.<p0(t)(1 + p1(x4, wm))a?g(t)
+c00 () p1(X g, Wi )Ue — oo (t) 01 (24, Wi )ag
+aipo(t)p1 (T4, Wi )wm ()

Tot+1) = —21(t) + Z2(t),

and combined with (12) and (13) we obtain the following
output equations for u(t) and e(t)

u(t) = (14 z4(t)) (—il(t) + 2o (t) + ﬂca_lao )(22)
e(t) fcl:zl(t). (23)

The obtained state update and output equations can be
expressed in matrix form

T(t+1) =
z(t) =

A(t, zg, wn)Z(t) + Ber(t, 24, W) (24)
C(x4)§:(t) + Deo (1‘4) (25)

where Z(t) = [Z1(t), T2(t)], 2(t) = [u(t),e(t)]?, and

A(t, x4, wm) = [ a3*alclf(i(1+501)7 (Z161<p0(11+<p1) }(26)
5= | 0 ] @7)

Oy = | TG0 1RO } 28)
b= |5 } 29)
altes,wn) = apolt) (1 (@a,wm) (e — ao) + agwn) 30)
e2(rs) = MT—lcu)(l+x4) 31

State-transition matrix A is a T-periodic random matrix,
which depends on the exogenous random input signals x4
and v,, via 1, but not on the state £. Matrix C' is a random
matrix, which depends only on the exogenous random input
signal x4. B and D are constant vectors, while ¢; and e, are
scalar input signals constructed from x4 and v,,.

Equations (24) and (25) encode a wealth of information
dictating the performance, stability, and robustness of the
closed loop system. The following result is useful towards
extracting some of this information.

Lemma 6.1: E(p1) = E(e1) =0, E(e2) = (@ — ag)/as.

Proof:  First, E(p1 (x4, wn)|z4) = E(zg + wp +
Tawm|ry) = 4 + Blwy) + 24E(wy) = x4 Tt s
trivial to show that Exzy = 0, and by invoking the
Law of Total Expectation’> we obtain E(p;(z4,w,,)) =
E(E(¢1 (24, wim)|4)) = 0.

Thereafter, by using the linearity property of the expecta-
tion operator and invoking E(¢;) = 0, we obtain E(e;) =
clcpo((ﬁc —ag)E(p1) + aoE(wm)) =0.

Finally, the expected value of e is trivially obtained
E(e2) = E (e — ao)(1 + z4)/a1) = (4. — ao)/a1, which
completes the proof. [ ]

We are now equipped to prove the following key result.

Theorem 6.1: 1f u(t) is constant, then E([z1, z2, x5, 24])
has a limit cycle [z}, 23, 23, x| given by

7 (t) e Y0y af oot — 1)
x5 (t) _ (e — ag)/ar
(1) 0 i ot — i)
i (t) 0

while the performance signal E(z7) := E([u, €]) has a fixed
point solution [u*, e*] given by
Ue—0a0
ay .
5]

*
Z5 = “
: o

The limit cycle and fixed point solution are globally asymp-
totically stable if and only if the eigenvalues of A(1,0,0) :=
A(T,0,0)A(T — 1,0,0)--- A(1,0,0) are strictly inside the
unit circle.

Proof:  The trajectory of x3(t) is deterministic and
given by (18). Since 0 < a3 < 1, @(t) is constant, and g ()
is bounded, it can be written as

[ee]
r3(t) = abz3(0) + x5(t) — 1. Z ak Yo (t — i),
i=t+1

2Law of Total Expectation: If X1 and X» are random variables and the
expectation of X is defined, then E(X) = E(E(X1]|X?2)).



where  a4z3(0) — 0 and  a}(t) <
e max, ([oo(T)) S50, ab™t = Gcmax,(Jo(7)])/(1 —

az) < oo. Finally, |72, a5 oot —i)uc(t —i)| <
e max-(J¢o(7)]) S0, ab " — 0 as t — oo. Hence,
x3(t) — x%(t), which is a bounded T-periodic function. In
other words, x3(t) has a globally asymptotically stable limit
cycle defined by x3.

Next, since E(wu (t)) = 0 for all ¢, it follows from (19)
that E(z4(t)) = alz4(0), which converges to zero. Hence
E(z4(t)) has a globally asymptotically stable fixed point
solution 2} = 0.

The Law of Total Expectation yields E(Z(t +
1)) = E(E@(t + 1)|Z(t))). Replace z(t + 1)
with the right hand side of (24) and recognize
that E(A(t,z4, w,)Z(t) + Bey(t, x4, wy,)|Z(t)) =

E(A(t, x4, wn))Z(t) + BE(€1 (24, W )). Since E(py) = 0,
it is easily shown that E(A(t, z4,wy,)) = A(t,0,0) and
E(e1 (24, wn)) = 0. Hence, E(a?(zH—l)) = A(t,0,0)E(Z(t)),
which has the origin as a fixed point solution. However, the
solution is not obviously unique since A(t,0,0) potentially
does not have full rank.

Since A(t,0,0) is T-periodic, we invoke Floquet theory in
discrete time, which states that the system is asymptotically
stable if and only if the eigenvalues of A(¢,0,0) := A(t +
T-1,0,00A(t+T—2,0,0)--- A(t,0,0) are strictly inside
the unit circle. On the other hand, due to Floquet, A(¢,0,0)
and A(1,0,0) have the same eigenvalues and are mapped to
each other via a pure rotation.

Now, invert the mapping in (20) and (21) to obtain

1
;fl(t) + x3(t)

1

Il(t) =

Ue — ag

:L'Q(t) = jg(f)—‘r

ai
Since [0,0]7 is a fixed point solution of E(Z(t)), it follows
that 2% is a limit cycle of E(x1(t)) and (4. — ag)/a; a fixed
point solution of E(x4(t)).

The limit cycle of [E(u(t)),E(e(t))]T is derived with
help of the Law of Total Expectation, which implies
E(z(t)) = E(E(z(¢)|Z(t))). Replace z(t) with the right
hand side of (25) and recognize that E(C(z4)Z(t) +
Des(x4)|Z(t)) = E(C(24))%(t)+ DE(e2(4)). Furthermore,
note that E(C'(z4)) = C(0) and E(ea(x4)) = €2(0). Hence,

E(=(t) = C(OE@E®)+Dex(0).  (32)

However, D = [1,0]7 and €3(0) = (@, — ag)/a1. Since
the origin is a fixed point of E(Z(t)), it follows that
u* := (4. — ap)/a; and zero are fixed point solutions of
E(u(t)) and E(e(t)), respectively. The above limit cycle for
21(t) and fixed point solutions for z2(t), u(t), and e(t) are
globally asymptotically stable if and only if the eigenvalues
of A(1,0,0) are strictly inside the unit circle. This completes
the proof. [ ]

It is in general not possible to derive a simple formula
for the eigenvalues of A(1,0,0) as a function of parameters
as, a1, ¢, and h(t). However, it is straightforward for
any set of parameters, and with help of a computer, to
evaluate the product A(T,0,0)A(T — 1,0,0)--- A(1,0,0),
and then compute the eigenvalues of this matrix. It is an
insightful exercise to do this for a few examples. Note for
A(t,0,0) that parameters a; and ¢, always appear together as
a product. This reduces the degrees of freedom as we analyze

the dynamics. We only need to consider combinations of
the triplet a3, aj¢, and h(t) in order to gain a complete
understanding of the stability of any configuration.
Example 6.1: Assume h(t) = hqsin(2ntA/24), where
A = 5/60 hours, and consider six different values of the sea-
sonality amplitude (h; = 0,0.5,0.7,0.9,0.975, and 1). For
each value of hj, we compute the eigenvalues of A(1,0,0)
for 40,000 combinations of a3 and a;c;, and determine the
stability of each combination. The result is shown using heat
maps in Figure 4. Blue color means unstable, and yellow
means stable. For values of h; different from 0, the heat
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Fig. 4.  Stability (yellow) and instability (blue) regions when h(t) =
hi sin(27tA/24) and A = 5/60 hours.

maps have three regions. In the blue connected region, all
combinations of ag and a;¢ lead to instability while in the
fully yellow region all combinations correspond to stability.
Finally, in the third region (blue and yellow mixed) some
configurations are stable and some are unstable. In particular,
it corresponds to systems where tiny alterations of ags or a¢
may turn a stable system unstable, or an unstable system
stable. The stable configurations in this region are structurally
non-robust. The only region in which we want to operate is
the fully yellow one, and then on a sufficiently large distance
from any unstable configuration to ensure robustness.

Theorem 6.2: If a3 = 0, then the limit cycle and fixed
point solution in Theorem 6.1 are globally asymptotically
stable if and only if ‘HiTzl (1 — alclgoo(t)> < 1.

Proof: With the same reasoning as in the proof of The-
orem 6.1, we establish that E(Z(t+1)) = A(¢,0,0)E(Z(t)).
According to Floquet, E(Z(t)) = 0 is globally asymptotically
stable if and only if the eigenvalues of A(1,0,0) are strictly
inside the unit circle. Since a3 = 0, we know from (26) that

A(1,0,0) [ —a1cpo(t), a1clcfo(t) } .

)

It is easy to confirm by matrix multiplication and fac-
torization that for any 7, it is always true that A(7 +
1,0,0)A(7,0,0) = (1—aicp0(7)) A(T+1,0,0). Repeating
this for 7 =1,2,...,7 — 1 yields
T—1
A(1,0,0) = <H (1 —alc[goo(i)>> A(T,0,0).
i=1

The eigenvalues of A(1,0,0) are obtained as the solutions
to det(AI — A(1,0,0)) = 0. It is straight-forward to obtain

A <)\ - ﬁ (1 - alclgoo(i))) :

i=1

det(A — A(1,0,0)) =



The solutions are A\; = 0, which is always inside the unit

circle, and \y = HiTzl (1 — alclgoo(i)), which is inside the

unit circle if and only if ‘HiTzl (1 — ar1¢po(i ’ < 1, which
proves the condition for asymptotic stability of E(Z(¢)) = 0.
The same condition defines stability for E(z) and E(z) as

outlined in the proof of Theorem 6.1. [ ]

VII. SIMULATION RESULTS

Consider a plant where the delay-free ad spend ¢(t)
ftu(t),wn(t)) = 500(1 + 0.8sin(2wtA/24))(1
Wy, (1)) tanh (u(t) — 4), A = 5/60 hours, wy,(t)
Gaussian(0,0.22),and t = 0, 1, . . .. The relationship between
u and E y) is smooth and can be linearized around each
operating point of u yielding §(t) ~ (ao + aru(t))(1 +
0.8sin(2mtA/24)) (1+wy,(t)) in accordance with the plant
model introduced in Section IV. Suppose the observed ad
spend has a latency time constant 7, = 0.5 hours, which
corresponds to a discrete-time latency dynamics described
by y(t) = agy(t — 1) + (1 — as) f(t, ult), wn (1)), where
as = e~ 2/Tr_ Let the total flight time 7" = 720 hours (one
month), and the set-point signal be

_ 450, if tA <237 or tA > 482
Ue = 100,

if 237 < tA <482

Configure the controller (Algorithm 1) using a4 =
e~A/TrPE | where Tpr = 0.05 and the plant identification
system (Section V) with an exponential memory loss A\gy.g =
e~A/TrLs with Trrs = 5. Furthermore, assume the simu-
lated persistent excitation noise w,, (t) ~ Gaussian(0, 0.04%).
Finally, let ¢, = 0.05/d;.

We implement the plant identification system as a bank
of seven parallel RLS estimators (Section V), for which
the parameter estimate covariance matrix P is reset in a
staggered fashion, one every 15 hours. That is, each estimator
has its covariance matrix reset once every 105 hours. The
bank of estimators generates estimates 6',0%,...,6", and
each such estimate contains a plant gain estimate ag” We
select a1 = rr{{eldla%al) for adjusting ¢, to ensure desired

i€
performance and robustness trade-off.

A representative result of the closed-loop behavior is
shown in Figure 5. The figure displays the control signal u,
observed ad spend y, delivery error e, and plant gain estimate
a1. Note how u rapidly settles down on an approximately
constant value while the observed ad spend with good preci-
sion tracks the adjusted set-point signal u. and keeping the
error small. The approximately constant u and approximately
zero e corresponds to near-optimal ROI and smooth pacing
for the advertiser. The plant gain estimate G; also converges
towards the true value of a1, yet slowly. Overall, the control
behavior is good and according to expectation.

e+l

VIII. CONCLUSIONS

We have proposed a controller for online advertising
campaigns and derived stability conditions. The time-varying
plant yields a complex dynamics, but the simplicity of the
controller makes tuning easy. The controller has been com-
missioned extensively in simulated scenarios with convincing
results. Experimental commissioning is in progress with
great preliminary result. In a practical implementation, the
controller is supplemented with wind-up protection.
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Fig. 5. Simulated closed-loop results showing control signal u, observed

ad spend y, tracking error e and estimated (true) plant gain a1 (a;). The
set-point signal . changed from 100 to 450 at hour 250.

Future work includes robustness analysis to determine the
impact on dynamics and stability from imperfect estimates
of as and h(t), and research for enhanced online and offline
algorithms to estimate plant gain, seasonality parameters,
feedback latency, and plant noise level.
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